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ABSTRACT 

The study of lateral variations of earth structure has been stimulated recently 

by several factors, especially the theory of plate tectonics and the increasing use of 

large seismic arrays. The extension of seismic ray theory to two and three dimen- 

sional structures is thus of great practical importance. 

The problem of ray tracing in a generally heterogeneous medium is treated, using 

the calculus of variations and Fermat's principle of stationary time.    The solution is 

expressed in terms of a system of five simultaneous first order differential equations 

giving the variation with time of the position and direction of motion of a point on a 

ray in terms of the wave speed and its spatial derivatives in the medium.    The form of 

the equations is particularly convenient for solution on a digital computer. 

The effect upon the wave amplitudes of geometric spreading can also be calculated 

by the inclusion of ten additional equations in the system, although this greatly increases 

the computational labor. 

If the earth model has certain symmetry properties, then constants of the motion 

along each ray can be found which simplify the calculations.    For example, for two- 

dimensional models in which the velocity depends only on the coordinates r (radius) 

and 9 (colatitude) one equation can be eliminated from the ray tracing system, and 

two more can be eliminated from the amplitude equations. 

The propagation of surface waves on an earth with geographical variations can 

be treated by a simplified special case of the method presented here. 

Accepted for the Air Force 
Joseph R. Waterman,  Lt. Col.,  USAF 
Chief,  Lincoln Laboratory Project Office 
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Introduction 

In the past, most studies of seismic waves have been based upon the assump- 

tion that the earth is spherically symmetrical, with physical properties depending 

only on radius.   Recently, however, it has become apparent that this approximation 

is often not justified (Julian, 1969) and more attention has been directed by seismologists 

to the study of lateral variations of structure.   Two developments in particular have 

stimulated interest in wave propagation through two and three dimensional structures: 

the existence of large seismic arrays, which have yielded clear evidence of azimuthally 

dependent travel time anomalies  , and the theory of plate tectonics which hypothesizes 

the existence of relatively systematic large scale motions in the upper part of the 

earth (Isacks et. aL , 1968; Da vies and McKenzie, 1969).   This paper presents a for- 

mulation of seismic ray theory which is applicable to such problems.   The system of 

differential equations derived is easily soluable numerically to trace rays through 

complicated structures. 

Ray Tracing 

Recently V. A.  Eliseevnin (1965) has formulated the ray problem for an arbi- 

trarily inhomogeneous medium.    Starting with the Eikonal equation, he derived the 

following system of six simultaneous differential equations for the motion of a distur- 

bance along a ray: 

XNiazi, 1966; Bolt and Nuttli, 1966; Nuttli and Bolt, 1969; Greenfield and Sheppard, 1969. 



where: 

x = v cos a 

y = v cos 6 

z   =   v cos Y 

dv .    dv dv 
r— sin a - :r— cot a cos q - -^- cot a cos v dx dy dz 

dv dv    . dv 
- ^— cos a cot ß + jr— sin R - ^— cot R cos y 

dv dv dv    . 
- ^— cos a cot V - :r— cos R cot Y + =N— sin v 

dx Y      dy dz 

(1) 

x,y,z are the cartesian coordinates of the distrrbance at a particular 

time. 

a, ß, Y are the direction angles of the tangent to the ray. 

v(x,y,z) is the wave speed. 

The partial derivatives g^ , sp , and ~ indicate spatial derivatives 

at x, y, z,  not derivatives along the ray path. 

Only five of these equations are independent, because the angles a,  8 and y are 

connected by the relation cos2 a + cos2 0 + cos2 y = 1.    A much simpler way of stating 

these equations follows if we define a slowness vector, S, such that 

r = v2S  . (la) 

The components of S are 

~      .  cos q 
X V 



c       -   C0S   ß 
y       v 

S     =  cos Y 

The rate of change of S is 

S  =   - -   [sin a a e*   + sin 6 0^+ sin y ye   ] v x y z 

- (S-V v) v S 

where e , e   and e   are unit vectors in the direction of the coordinate axes and, using 

(1) this becomes 

5 - -*.  . db) 

Despite the simplicity of (la) and (lb), for computational purposes expressions 

such as (1) in terms of angles instead of slowness are usually more useful, particularly 

in curvilinear coordinate systems.   We shall give a different derivation of equations 

(1), based on Fermat's principle of least time, and carry out the derivation in spheri- 

cal coordinates, so that the result will be in a seismologically useful form. 

Let r,  8, 0, be the spherical coordinates, at time t, of a point on a ray.    Further, 

letting § , e   ,£   , be the conventional unit vectors for spherical coordinates, define: 

i =      angle between ray direction and e . 

i =      angle between ray direction and eQ. 
9 b 

i =      angle between ray direction and e  . 
0 0 

The first three differential equations follow geometrically: 



v cos i (2) 

^cosiQ (3) 

cos i (4) 
^ r sin 6 0 

•      • • 
To find the differential equations for i , i   , and i   , we consider conditions for the 

To 0 

travel time to be stationary with respect to small changes in the ray path.    Using   0 

as a parameter, let the ray path,  c, be specified in terms of r(9) and #(9).   The 

travel time of a ray between two points where 9 = 0! and 0 = 02 is 

da r
02    rdB 

T  =    J T-   -   I v «J V COS 1^ 

91       
e 

where da is an element of length of the ray path.   Consider a small change in the ray 

path specified by 6r(0), 6 0(0) with 6r(0i) = 6r(02) = 6 0(0!) = 6 0(02) = 0, that is, with 

the end points of the ray fixed.    The change in the travel time is 

6T =   j
92   6rd6     + !\{l)Id^+    Pe%(_l_) £d9 (5) 

«J        V COS 1Q        J V COS 1 J cos iQ      v 
6i 6! 9        6i 6 

Performing some algebraic manipulations, and integrating by parts, this can be 

written 

cos 1 
ÖT  =     r    17      1 -        r dv . 9    /dr v2 

J     uvcosi„    v* cos i„    ör    ~vP~      xi0^ 

,     cos 1-   , -, _ d_ ( 0 dr^ r        r dv 
d0^   rv      dR;j °        L  vs cos in   00 



,     r cos l . 

•Ie(^-^sin2ele)]5*}de (6) 

As before, -^- , ^-r and ^— are ordinary derivatives with respect to position, not 
or     o ö o 0 

derivatives along the ray.   Since we want 6T = 0 for arbitrary 6r and 60, the coef- 

ficients of 6r and 60 in (6) must vanish.    Noting, from (2), (3), and (4) that 

dr_    .  r cos ir 

d9        cos i. 

and 

As cos ^ d0 0 
d9     sin 6 cos i 

these conditions can be written as 

di v r ov     v - cos i A -T7T =  sin i   ( T- — ) 
r 0 dB r v dr     r ' 

-coti   [££ii_eiy + cosi0   öy (7) 
r        r       *fi       r sin A 7Q J 

and 

di 
- cos i A -r£- =   - cot i J [cos i   (^   - —) 
r 0 d0 0 L r v dr     r ' 
V .      £_ _   _ __ ,     r x    ,bv      V 

cos iA -s sin i       . + e|v .vcote)]+ _^  |y 
r       9 9 r sin 9   ö0 (8) 

Using (3), we see that these are the expressions for i   and i   .   The expression for r 0 

in can be found from them using the fact that cos2i   + cos2in + cos2i    = 1. 
ü r b 0 

Instead of i. or in , it is simpler to use the angle Q between the vertical plane 
0 a 



tangent to the ray and the meridional plane.   We have 

cos iQ cos i 
cos C   =     .    . ö sin C =     .    .A sin l *       sin l 

r r 

so 

sin i      d iQ        cos iQcos ir    d ir 
sin c s = SIHT; dT" + —

SIFT       d~r 

sin2 C     dv         cos C sin C          1 dv      v   . . P.    fcA =    :—*-   3-Q r-*i — '  i—n Tl   --sini sin2£cotfi rsini     Ö0 sin l r sin 0  o<t>      r r       * 

and we can write the five equations for the ray as 

r  =  v cos ir (9) 

9 = - sin i   cos Q (10) 

* = FiEl   sinirsinC <U> 

(   = sini (g -1) - ^lil [cos C S +-2J24 & ] (12) r r or    r ' r      L       * oQ      sin 9   o0J 

;           sin C     dv        cos C          1 öv      v    .    . „     - A ,, ox C   =  !—*■    37,   " -3—•    '  \—ä TI    -- sin l sin C cot 9 (13) * r sin l      d0       sin l       r sin 9   ^       r r      * v    ' 

Amplitudes - Geometric Spreading 

Two phenomena affect the amplitudes of body waves:  geometric spreading of 

the rays and attenuation due to anelasticity.   We will direct our attention to geometric 

spreading first, assuming the earth is non-dissipative. 



Let 

I(i      £ ) =  power/unit solid angle radiated at the focus ro , o 

E(@, $)    =  power/unit area of wavefront at the point of observation 

where iro>CQ are the initial values of i^, and ©, $ are the values of 9 , 0 at the point 

of observation.   In a non-dissipative earth 

I(iro>C0)dQ =E©,$)dA (14) 

where dQ and dA are the corresponding elements of solid angle at the source and sur- 

face area of wavefront   at the receiver and are given by 

dQ = sin i     di    d£ ro     ro *o 

,A     R2sin6>    ,^,x 
dA = r=^  d®d§ cos 1 (15) 

R is the earth's radius.   Here i   refers to the value at the observation point.   d©and 

d$ refer to changes with r held fixed, along the earth's surface, not along a wavefront. 

d i    , d£   , d© and d$ are related by the Jacobian of the transformation from ©, $ to 

i    , Q   defined by the rays: 

d(<3>, §) 
3iro 

0$ 
Si ro 

ö(3> 0$ 
b0 te0 

(16) 

From (14), (15), and (16) we get 

E = I 
sin l     cos l ro r 

R2-.ini^      d(6~JT 
(17) 



To evaluate the partial derivatives in (16) we must solve ten more differential equations, 

for   ^. '   , K >   , . . .  ^,*   , -^-^    simultaneously with (9)-(13).    These equations are 
ro       ^o ro       ^o 

obtained by differentiating equations (9)-(13) with respect to i     and £   and reversing 

the order of differentiation (-^— R-]   =  -T- fe—], etc.), yielding 
diro   dt dt    cUro 

d   rörn     dr    Dv r /10v 

dt^]=^i = D^C0S1r-VSmiräT (18) 

d   rdfin        00    1   Dv -      v     .    . r   dr   , v . -      r 
-TT L^r—J    =   r- a-   !C  SUl 1     COS   Q   " ~rr Sin 1    COS C   -5-   + — COS 1     COS C   -5— dt Ldq öq     r  Dq r b     r2 r        *   dq     r r b    dq 

- ^ sin irsin £ -gi (19) 

d   rö^,     öj 1 .-Dv v ,.  dr v 
TT [-^J = 3^ = !—ö sin i   sin C R— :s—3—« sin I  sin r -^ r-^ dt LdqJ     dq     r sin 0 r - Dq     r^sin 9 r        ^  dq     r sin^B 

•••r ,36,      v .     ,    - **r . sin l sin Q cos 0 -5- H 1—5 cos 1   sin £ -^r + r0i11 * "vo °  dq   ' r sin 0 wvo xr 0il1 *  dq      r sin 6 

sin ir cos C f£ (20) 

d   ,    rn r      ,dv     Vv r . fD  ,dVv   1 Dv .   v    dr -» 
dF Läq-J = 5q        <Sr " 7> C0S Jr äT+ Sm Xr CD^ «SI*"? D^ + r^ ^q 1 

c0sJLr r      , D .av,   av .   , ag , sin ;  D .av, 

-,              -   ^-       .    -         r»    -sft         sin i     di       cos i     ^ dv   ,cos C    d£     sin C cos 0     d0v->  ,  , r     __r   , r   dr . 
d0 ^sin 0    dq sin2 0 dqH     {   r dq      "~P"   dq ' 



jLr^l = -äf =    s*n C      D  /dvv ,  dy r   cos Q     dg   _    sin £       ör 
dt'-dq-1    ^5q     r sin i     Dq ^d8'     de^rsini     dq   " r* sin i    "Sq 

sin Q cos i      öi -        ^     . ~ - 
r     r i _        cos Q        D    ,dv,     _dy  r       sin g 

r sina i dq   ■*     r sin 8 sini   Dq ^d^'     d$  *• r sin i   sin A 
r r r 

-„      cos C cos i      di „ -, - -      ~Ä d£ + 
b r     _j:   ,  _    cos £    ör + cos Q cos 8      d8 •> 

dq      r sin 8 sin^i     dq      r^sin 8 sin i     dq     r sina 8 sin i     dq * 

—  sin i sin C cot 8 K~ +^ sin i sin C cot 8 ■*- -— cos i sin C r r       b Dq     r2 r       * dq    r r       b 

cot 9   df " 7 Sin ir008 C COt 9 If"+ FslH^ sin V1» I U 
(22) 

Dq        dr     dq d8     dq d0     dq {ZÖ> 

and we have used q to represent either of the initial angles i     or Q   .    The derivatives 

K.      , T-r- . etc, thus obtained are those which apply when the travel time is held 
*ro        ^o 

fixed; that is they apply to values on a particular wavefront.   Derivatives along the 

earth's surface (r constant) needed in equation (16) can be obtained using the identity 

d    t     _  _d_ I (ör |      /   dr I   ,  d    . 
dq 'r        dq >t        ^dq 't   '    dt   'q' dt ' q . (24) 

The constant q derivatives are just those given in equations (9)-(13). 

where 



Amplitudes - Attenuation 

The attenuation of seismic waves due to anelasticity is quite easy to 

calculate if the intrinsic quality factor, Q, is known as a function of position and the 

ray path has been calculated.   The power in the wave is simply reduced by the factor 

/        p dt X exp (- u) J   Q-) 

where (ju is the angular frequency of the wave and the integral is evaluated along the 

ray path. The power per unit area of wavefront, P, is related to the amplitude, A, 

by 

P = 4 pvoJ2A2 

for both compressional and shear waves, where p is the density of the medium. 

Symmetry relations 

In special cases in which the earth model posesses certain symmetry properties, 

the 5 ray variables are no longer independent and one or more of the equations (9)-(13) 

may be eliminated from the system to be solved.    For example, in cartesian coordinates, 

if the velocity is independent of one of the coordinates then by (lb) the corresponding 

component of the slowness vector S is constant along a ray.    In spherical coordinates 

the situation is core complicated.    The rate of change of S is 

g  =  [Sr-S09-S0sin 9 0] er 

+  [SQ+5rG-S   cos 0 0] ee 
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+ [S +S sin 00 +S cos 00]e 

and, with (lb) this gives 

s = -I !Y + xi(S2+s2J r v   dr     r   v  0       $' 

k = - -L |};. £ (s s  - cot esM 
8 vr   d 0     r   v r  0 tf> 

5«- "^ETe S-?(srs/coteseV 

From (la), (9), (10), and (11) the components of S are 

cos i 
s   =  E r v 

sin i cos C r 
S„  = 0 v 

sin i sin C 
T s    =  -  0 V 

These equations can be used to verify the following relations: 

v = f(r):    (rSe)2+(rS)2   =   <£ sin y2   =  const. (25) 

v = f(r, 0):    r sin 0 S u  = - sin i   sin £ sin 8   =  const. (26) 
  0       v r 

The amplitude calculations, also, can be simplified by using symmetry rela- 

tions.    For example, when the velocity depends only on r and 0, from equation (26) 

the quantity 

p  = - sin i   sin C sin 0 r       v r        * 

11 



is constant along a ray, and thus so are its derivatives 

l5  =  P^|-;4S + cotir^+cotc|| + cote|2] (27) 

where, as before, q represents either i     or £   and yr- is defined in (23).    It further 

follows that the quantity in brackets in (27) is constant and this fact can be used to 

eliminate two of the equations (18)-(22) from the amplitude calculations. 

Ray Tracing for Surface Waves 

It should be pointed out that a very similar approach can be used to calculate 

surface wave paths on an earth model in which the surface wave velocity is a function 

of geographic position.   The ray tracing equations are obtained from equations (10), 

(11) and (13) by setting r = R and i   = TT/2: 

9   =  ^ cos C (28) 

*   = OnT SÜ1 C (29) 

;   _  sin C   öv       cos C      öv    v    .    , 0 ,,n. 
C  - HR      "Si " iTsIne   30 " R sin c cot 9 (30) 

The calculation of amplitudes, too, follows a development similar to that 

given above.   By analogy with equation (14) we have 

I(Co)d£o   =   E(9,0)d£ (31) 

where   I (£ )  =  power/unit angle radiated at the source 

E(9 , <b)   =  power/unit length of wavefront, dl, at B , 0. 

12 



Using the fact that 

bo ^o *0 

equation (31) gives 

P   _      

W <§£ )2 + sin- e <|f )* 

and the additional differential equations needed to calculate ^   and «-S   can be ob- 
3*o 3Co 

tained from equations (28)-(30) the same way equations (18)-(22) were derived from 

(9)-(13). 

Examples 

As examples of the use of the ray tracing technique, we will show ray paths 

calculated from two-dimensional models of dipping high-velocity slabs within the 

earth's upper mantle, such as are present beneath island arcs.   The numerical solu- 

tion of the differential equations has been carried out using the step size extrapola- 

tion method of Bulirsch and Stoer (1966), which is particularly fast and accurate. 

Figure 1 shows ray paths and wavefronts for a very simple model, in which 

the velocity is specified by an analytical function 

v  = vo + Aexp[-^-|] 

where x is the distance from the slab axis (assumed to dip at a 45° angle, and z is 

depth from the earth's surface,   v  , A, h, and d are constants.    In this example, the 

earthquake focus is located near the edge of the slab, thus producing, in addition to a 

13 
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Fig.  1.   P wave ray paths and wavefronts calculated for a focus near the edge 
of a simple analytical model of a high-velocity lithospheric slab (see text). 
The slab parameters are:  dip = 45°; velocity outside slab, vQ = 8. 0 km/sec; 
maximum velocity contrast,  A = 0. 8 km/sec; slab thickness, 2 h = 80 km; 
depth of penetration, d = 300 km. 
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large shadow zone, a region of strong focusing of energy. 

Figure 2 shows ray paths and wavefronts for a wave emerging from the mantle 

beneath a more detailed slab model.   The velocity model is derived from the theore- 

tical temperature field calculated numerically by Toksoz et al (1971).    In this case, 

the velocity is specified at a grid of points, and interpolation between these points is 

accomplished using cubic splines, so that the velocity and its first spatial derivatives 

are continuous.   Again, a shallow zone is produced, along with regions of focusing. 

Seismic stations on or near island arcs would thus be expected to have "blind spots" 

for    earthquakes in certain regions. 

Conclusions 

The formulation of ray theory given here is applicable to a medium with any 

type of inhomogeniety, and is well suited for numerical computations.    It allows the 

computation of amplitudes, considering both geometric and anelastic effects, though 

the computational labor may be greatly increased.   Furthermore, it can be extended 

easily to problems such as surface wave propagation on an earth with geographical 

variations. 
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Fig. 2.   Ray paths and wavefronts for P wave emerging beneath an island arc. 
The slab model is derived from numerical temperature field calculations. 
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